
Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 17: Integer Representation. Algorithms for integer operations.
Section 4.2

1 Integer Representation. Algorithms for Integer

Operations

1.1 Integer Representation

There different ways to represent integers based on choosing different basis b to write
the numbers. Computers usually use binary notation (with 2 as the base) when
carrying out arithmetic, and octal (base 8) or hexadecimal (base 16) notation when
expressing characters, such as letters or digits.

Definition 1. Let b be an integer greater than 1. Then if n is a positive integer, it
can be expressed uniquely in the form

n = akb
k + ak−1b

k−1 + . . . a1b + a0,

where k is a nonnegative integer, a0, a1, . . . , ak are nonnegative integers less than b,
and ak 6= 0.

Example 2. (Binary Expansion) Choosing 2 as the base gives binary expansions
of integers. In binary notation each digit is either a 0 or a 1 For example, suppose
that we want to compute the decimal expression for (101011111)2:

(101011111)2 = 1(28)+0(27)+1(26)+0(25)+1(24)+1(23)+1(22)+1(21)+1(20) = 351

(BASE CONVERSION) We will now describe an algorithm for constructing the base
b expansion of an integer n.

1. First, divide n by b to obtain a quotient and remainder, that is,

n = bq0 + a0, where 0 ≤ a0 < b.

The remainder, a0, is the rightmost digit in the base b expansion of n.

2. Next, divide q0 by b to obtain

q0 = bq1 + a1, where 0 ≤ a1 < b.

We see that aa1 is the second digit from the right in the base b expansion of n.

3. Continue this process, successively dividing the quotients by b, obtaining addi-
tional base b digits as the remainders. This process terminates when we obtain
a quotient equal to zero. It produces the base b digits of n from the right to the
left.

1

1.2 Algorithms for Integer Operations

Consider the problem of adding two integers in binary notation. To add a and
b, first add their rightmost bits. This gives

a0 + b0 = c0 · 2 + s0,

where s0 is the rightmost bit in the binary expansion of a + b and c0 is the carry,
which is the carry. Then add the next pair of bits and the carry,

a1 + b1 + c0 = c1 · 2 + s1,

where s1 is the next bit (from the right) in the binary expansion of a + b, and c1 is
the carry. Continue this process.

procedure add(a, b: positive integers)
(The binary expressions of a, b are (an−1, an−2, . . . , a0) and (bn−1, bn−2, . . . , b0))
c = 0
for j = 0 to n− 1:

d = b(aj + bj + c)/2c (quotient cj)
sj = aj + bj + c− 2d (remainder sj)
c = d

return (s0, s1, . . . , sn) (the binary expansion of the sum is (sn, sn−1, . . . , s1, s0))

Consider the multiplication of two n-bit integers a, b. Using the distributive law,
we see that

ab = a(b02
0 + ab12

1 + · · ·+ abn2n

Observe that abj = a if bi = 1 and 0 if bj = 0. Each time we multiply a term by 2,
we shift its binary expansion one place to the left and add a zero at the tail end of
the expansion. Consequently, we can obtain abj2

j by shifting the binary expansion
of abj j places to the left, adding j zero bits at the tail end of this binary expansion.
To finish we need to add all the abj2

j including initial zero bits if necessary.

procedure multiply(a, b: positive integers)
(The binary expressions of a, b are (an−1, an−2, . . . , a0) and (bn−1, bn−2, . . . , b0))
c = 0
for j = 0 to n− 1:

if bj = 1 then cj = a shifted j places to the left
else cj = 0
((c0, c1, . . . , cn−1) are the partial products)

p = 0
for j = 0 to n− 1: (adding all the partial products cj)

p = p + cj
return p (the value of ab)

2

Consider the situation now of finding div ad mod for integers a, d with d > 0. We
can find q and r by using a brute-force algorithm, when a is posiitive we subtract d
from a as many times as necessary until what is left is less than d. The number of
times we perform this subtraction is the quotient and what is left over after all these
subtractions is the remainder.

procedure division algorithm(a: an integer, d: positive integer)
q = 0
r = |a|
while r ≥ d

r = r − d
q = q + 1

if a < 0 and r > 0 then
r = d− r
q = −(q + 1)

return (q, r) (the quotient and the remainder of the division of a by d)

In cryptography it is important to be able to find bn mod m efficiently, where b, n
and m are large integers. It is impractical to first compute bn and then find its
remainder when divided by m. We present an algorithm using the binary expansion
of n = (ak−1, . . . , a1, a0). We have that

bn = bak2
k

bak−12
k−1

. . . b2a1ba0 .

Therefore, we could simply compute b, b2, b4, . . . , b2
k

and multiply the elements in
the list with aj = 1. The algorithm will successively finds b mod m, b2 mod m,
bk mod m and multiplies together those terms where aj = 1.

procedure modular exponentiation(b: integer, n = (ak−1, . . . , a1, a0))
m: positive integer)

x = 1
power = b mod m
for i = 0 to k − 1:

if ai = 1 then x = (x · power) mod m
return x (x = bn mod m)

3

	Integer Representation. Algorithms for Integer Operations
	Integer Representation
	Algorithms for Integer Operations

